Product Description
Product Model | SWL2.5, SWL5, SWL10, SWL15, SWL20, SWL25, SWL35, SWL50, SWL100, SWL120 |
Product Description | Basic lifting component, compact structure, small size, light weight, no noise, safe and convenient, flexible use, high reliability, wide power source, multiple supporting functions, long service life |
Usage | Single or combined use, can accurately control the adjustment of lifting or pushing height according to a certain program, can be directly driven by motor or other power, can also be manual |
Lifting Efficiency and Load Capacity | Special and advanced technology has been developed to improve the overall performance of the jack |
Structural Type | Type 1 – Screw moves axially; Type 2 – Screw rotates, nut moves axially |
Assembly Type | Type A – Screw/nut moves upwards; Type B – Screw/nut moves downwards |
Screw Head Type | Type 1 structure screw head: Type I (cylindrical), Type II (flange), Type III (threaded), Type IV (flat head); Type 2 structure screw head: Type I (cylindrical), Type III (threaded) |
Transmission Ratio | Ordinary speed ratio (P), slow speed ratio (M), medium speed ratio (F) can be customized according to user requirements |
Lifting Load Capacity | 2.5kN, 5kN, 10kN, 15kN, 20kN, 25kN, 35kN, 50kN, 100kN, 120kN |
Screw Protection | Type 1 structure: basic type (no protection), anti-rotation type (F), with protective cover (Z), anti-rotation and protective cover (FZ); Type 2 structure: basic type (no protection) |
Product description: SWL series worm gear screw lift is a basic lifting component with many advantages such as compact structure, small volume, light weight, no noise, safety and convenience, flexible use, high reliability, wide power source, many supporting functions and long service life. It can be used singly or in combination, can adjust the height of lifting or advancing accurately according to certain procedures, and can be driven directly by electric motor or other power, or manually. In order to improve the efficiency and carrying capacity of SWL series worm gear screw lift, special and advanced technology is developed to improve the comprehensive performance of the lift to meet the requirements of the majority of customers. SWL series worm gear screw lift has different structure types and assembly types, and the lifting height can be customized according to the user’s requirements.
RFQ
Q:What information should I tell you to confirm speed reducer?
A: Model/Size, Transmission Ratio, Shaft directions & Order quantity.
Q:What if I don’t know which gear reducer I need?
A:Don’t worry, Send as much information as you can, our team will help you find the right 1 you are looking for.
Q:What should I provide if I want to order NON-STANDERD speed reducers?
A: Drafts, Dimensions, Pictures and samples if possible.
Q:What is the MOQ?
A: It is OK for 1 or small pieces trial order for quality testing.
Q:How long should I wait for the feedback after I send the inquiry?
A: Within 6 hours
Q:What is the payment term?
A:You can pay via T/T(30% in advance+70% before delivery), L/C ,West Union etc
Standard or Nonstandard: | Nonstandard |
---|---|
Application: | Electric Cars, Motorcycle, Marine, Agricultural Machinery, Car |
Spiral Line: | Right-Handed Rotation |
Head: | Single Head |
Reference Surface: | Toroidal Surface |
Type: | ZK Worm |
Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
---|
Can gear pumps be used in chemical processing and manufacturing?
Yes, gear pumps can be effectively used in chemical processing and manufacturing. Here’s a detailed explanation:
1. Chemical Compatibility:
Gear pumps are available in a variety of materials, including stainless steel, cast iron, and non-metallic options such as PTFE or PVC. This wide range of material options allows gear pumps to handle a diverse range of chemicals, acids, solvents, and corrosive fluids commonly used in chemical processing and manufacturing. Proper material selection ensures compatibility and prevents chemical reactions or contamination.
2. Precise Flow Control:
Gear pumps offer precise flow control, making them suitable for applications where accurate dosing or metering of chemicals is required. The positive displacement operation of gear pumps ensures consistent and repeatable flow rates, allowing precise control over the amount of fluid being transferred. This feature is critical in chemical processing and manufacturing, where precise quantities of chemicals need to be mixed or added to achieve desired formulations or processes.
3. Viscosity Handling:
Chemical fluids can vary widely in viscosity, ranging from thin solvents to highly viscous liquids. Gear pumps are capable of handling fluids with different viscosities due to their positive displacement action. They can effectively transfer low-viscosity fluids as well as thicker or more viscous substances, ensuring reliable fluid transfer in chemical processing and manufacturing applications.
4. Reliability and Durability:
Chemical processing and manufacturing often involve demanding operating conditions, including high pressures and corrosive environments. Gear pumps are known for their reliability and durability in such challenging conditions. They are designed to withstand high pressures and can be constructed using corrosion-resistant materials, ensuring long-term performance and minimizing downtime in chemical processing and manufacturing operations.
5. Versatility:
Gear pumps are versatile and can handle a wide range of chemical applications. They can be used for transferring chemicals between containers, pumping chemicals into reactors or mixers, circulating fluids in chemical processes, and more. Their adaptability to different chemical processing and manufacturing tasks makes gear pumps a valuable asset in these industries.
6. Ease of Maintenance:
Gear pumps have a relatively simple design with few moving parts, making them easy to maintain. Routine maintenance tasks such as lubrication, seal replacement, or inspection can be performed with ease, minimizing downtime and ensuring continuous operation in chemical processing and manufacturing facilities.
In summary, gear pumps are well-suited for chemical processing and manufacturing applications due to their chemical compatibility, precise flow control, viscosity handling capabilities, reliability, versatility, and ease of maintenance. These features make gear pumps a dependable choice for transferring a wide range of chemicals and ensuring efficient and consistent processes in these industries.
Can gear pumps handle abrasive and corrosive fluids effectively?
Gear pumps are generally not the most suitable choice for handling abrasive and corrosive fluids effectively. Here’s a detailed explanation:
1. Abrasive Fluids:
Abrasive fluids contain solid particles that can cause wear and damage to pump components. Gear pumps have tight clearances between the gear teeth and the pump housing, and the presence of abrasive particles can lead to accelerated wear and reduced pump efficiency. The abrasive particles can cause erosion of the gears, housing, and other internal surfaces, leading to increased clearances and decreased pump performance over time. While gear pumps may be able to handle some mildly abrasive fluids, they are not designed for heavy-duty abrasive applications.
2. Corrosive Fluids:
Corrosive fluids can chemically attack and degrade the materials used in gear pumps. Many gear pumps are constructed using materials such as cast iron, stainless steel, or bronze, which offer good resistance to corrosion in a wide range of fluids. However, highly corrosive fluids, such as strong acids or alkalis, can still cause damage to these materials over time, leading to leaks, reduced performance, or even pump failure. In corrosive fluid applications, it is often necessary to use specialized materials or corrosion-resistant coatings to protect the pump components.
3. Alternative Options:
For handling abrasive and corrosive fluids effectively, alternative pump technologies are often preferred. Some options include:
- Diaphragm Pumps: Diaphragm pumps use a flexible diaphragm to handle abrasive and corrosive fluids. The diaphragm separates the fluid from the pump components, protecting them from direct contact with the fluid.
- Peristaltic Pumps: Peristaltic pumps use a flexible tube or hose to transport fluids. The fluid only comes into contact with the tube, which can be made from materials resistant to abrasion and corrosion.
- Centrifugal Pumps: Centrifugal pumps are often used for abrasive and corrosive fluids. They rely on the centrifugal force generated by a rotating impeller to move the fluid, and they can be constructed with materials that withstand the corrosive effects of the fluid.
- Progressive Cavity Pumps: Progressive cavity pumps use a rotating screw-like rotor inside a rubber stator to transfer fluids. The design allows for gentle handling of abrasive and corrosive fluids without significant wear or damage.
In summary, while gear pumps can handle some mildly abrasive fluids and certain corrosive fluids, they are not typically the most effective choice for handling highly abrasive or corrosive fluids. For such applications, alternative pump technologies that are specifically designed to handle abrasive or corrosive fluids should be considered to ensure optimal performance, longevity, and reliability.
Can gear pumps be used for both high-pressure and low-pressure applications?
Yes, gear pumps can be used for both high-pressure and low-pressure applications. Here’s a detailed explanation:
1. High-Pressure Applications:
Gear pumps can be designed and configured to handle high-pressure fluid transfer. By adjusting various parameters such as gear size, tooth profile, operating speed, and material selection, gear pumps can generate the necessary pressure to meet the requirements of high-pressure applications. The close tolerance design and efficient sealing mechanisms of gear pumps contribute to their ability to handle high pressures without excessive leakage or loss of performance.
2. Low-Pressure Applications:
Similarly, gear pumps are also suitable for low-pressure applications. The positive displacement operation of gear pumps allows them to deliver a consistent flow rate even at low pressures. Gear pumps can efficiently handle low-viscosity fluids and transfer them with precision, making them suitable for applications that require accurate metering or low-pressure fluid circulation. Additionally, the compact size and simplicity of gear pump design make them convenient for low-pressure systems where space and simplicity are important considerations.
3. Pressure Control:
Gear pumps can incorporate pressure relief valves or bypass mechanisms to regulate and control the pressure within the system. These features allow gear pumps to adapt to varying pressure requirements and protect the pump from excessive pressure build-up. Pressure relief valves can be set to open and divert excess fluid when the system reaches a specified pressure, ensuring safe and reliable operation in both high-pressure and low-pressure scenarios.
4. System Integration:
Gear pumps can be integrated into different hydraulic or fluid systems to accommodate various pressure levels. They can be used as standalone pumps or as part of a larger system, working in conjunction with other components such as valves, filters, and control devices. The flexibility and versatility of gear pumps make them adaptable to a wide range of pressure requirements across different industrial applications.
5. Application Considerations:
When selecting a gear pump for a specific application, it’s essential to consider the desired pressure range, flow rate, viscosity, and other system requirements. Proper sizing, material selection, and configuration of the gear pump will ensure optimal performance and longevity in both high-pressure and low-pressure applications.
In summary, gear pumps can effectively handle both high-pressure and low-pressure fluid transfer applications. Their design versatility, pressure control options, and ability to integrate into various systems make gear pumps a reliable choice for a wide range of pressure requirements in different industries.
editor by CX 2023-09-21