China Hot selling CNC Machining Aluminum Metal Bevel Worm Helical Spur Gears Herringbone Gears hypoid bevel gear

Product Description

QY Precision specializes in design and production of high precision metal parts and components.Focus on industry and action on demand, to be your trusted partner is our mission.

 

Custom High Precision CNC Machining Aluminum Metal Bevel gears  Worm gears Helical gears Spur gears Herringbone gears 

 

Gear Introduction
 

Bevel Gears

Bevel gears are most commonly used to transmit power between shafts that intersect at a 90 degree angle. They are used in applications where a right angle gear drive is required. Bevel gears are generally more costly and are not able to transmit as much torque, per size, as a parallel shaft arrangement.

Worm Gear

Worm gears transmit power through right angles on non-intersecting shafts. Worm gears produce thrust load and are good for high shock load applications but offer very low efficiency in comparison to the other gears. Due to this low efficiency, they are often used in lower horsepower applications.

Helical Gears

Helical gears have teeth that are oriented at an angle to the shaft, unlike spur gears which are parallel. This causes more than 1 tooth to be in contact during operation and helical gears can carry more load than spur gears. Due to the load sharing between teeth, this arrangement also allows helical gears to operate smoother and quieter than spur gears. Helical gears produce a thrust load during operation which needs to be considered when they are used. Most enclosed gear drives use helical gears.

Spur Gears

Spur gears transmit power through shafts that are parallel. The teeth of the spur gears are parallel to the shaft axis. This causes the gears to produce radial reaction loads on the shaft, but not axial loads. Spur gears tend to be noisier than helical gears because they operate with a single line of contact between teeth. While the teeth are rolling through mesh, they roll off of contact with 1 tooth and accelerate to contact with the next tooth. This is different than helical gears, which have more than 1 tooth in contact and transmit torque more smoothly.

Hypoid Gears

Hypoid gears look very much like a spiral bevel gear, but unlike spiral bevel gears, they operate on shafts which do not intersect. In the hypoid arrangement because the pinion is set on a different plane than the gear, the shafts are supported by the bearings on either end of the shaft.

Herringbone Gears

Herringbone gears are very similar to the double helical gear, but they do not have a gap separating the 2 helical faces. Herringbone gears are typically smaller than the comparable double helical and are ideally suited for high shock and vibration applications. Herringbone gearing is not used very often due to their manufacturing difficulties and high cost.

 

Why Choose QY Precision

FAQ

1.How to get a quote?
Kindly send us the drawing of your product,please. Including details as below: a.Materials b. Surface Finish c. Tolerance d. Quantity If you need solutions for your application, kindly send us your detail requirements, and we will have engineers to service you.

2.How does the payment process work?
Payment terms are flexible for us. We can accept different type payment way:

3.How do I know about the production?
We will double confirm your requirements and send you the sample before the mass production as you required. During the mass production,

4.How do I know about the delivery?
Before shipment we will confirm with you about all the details including CI and other attention issues. After ship out, we will inform you of the tracking number and keep updating the latest shipping information for you.

5.What will you do for after sales?
We will follow up and await your feedback. Any question related to our metal parts, our experienced engineers are ready to help. And welcome to contact for any supporting of your other application even if their is no relationship with our products.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Fastener, Auto and Motorcycle Accessory, Hardware Tool, Machinery Accessory, Robotics
Standard: GB, EN, API650, China GB Code, JIS Code, TEMA, ASME, CE, FCC, RoHS, ISO9001:2008
Surface Treatment: Anodizing
Production Type: Mass Production
Machining Method: CNC Turning
Material: Nylon, Steel, Plastic, Brass, Alloy, Copper, Aluminum, Iron, Titanium Alloy
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

gear pump

What are the safety considerations when using gear pump systems?

When using gear pump systems, several safety considerations should be taken into account. Here’s a detailed explanation:

1. Pressure and Temperature Ratings:

Ensure that the gear pump system components, including the pump itself, piping, and fittings, are appropriately rated for the operating pressure and temperature. Exceeding these limits can lead to component failure, leaks, or other safety hazards. Refer to the manufacturer’s specifications and guidelines to ensure compliance with the recommended pressure and temperature ratings.

2. Proper Installation:

Follow proper installation procedures to ensure the gear pump system is securely and accurately installed. Improper installation can lead to leaks, misalignment, or excessive vibrations, which can compromise the safety and performance of the system. Adhere to manufacturer instructions and industry standards for installation practices.

3. Electrical Safety:

If the gear pump system is powered by electricity, adhere to electrical safety guidelines. Ensure proper grounding, use appropriate circuit protection devices, and follow electrical codes and regulations. Regularly inspect electrical connections and wiring for any signs of damage or wear, and address any issues promptly.

4. Hazardous Materials Handling:

If the gear pump system is used to transfer hazardous materials, such as flammable or toxic substances, additional safety measures should be implemented. Follow proper protocols for handling, storage, and disposal of hazardous materials. Use appropriate personal protective equipment (PPE) and ensure proper ventilation in the working area to minimize exposure risks.

5. Emergency Shutdown Procedures:

Establish clear and accessible emergency shutdown procedures for the gear pump system. Ensure that all personnel involved in operating or maintaining the system are familiar with these procedures. This includes knowing how to quickly and safely shut down the system in case of emergencies, such as leaks, equipment malfunctions, or other hazardous situations.

6. Regular Maintenance and Inspection:

Implement a regular maintenance and inspection schedule for the gear pump system. This includes routine checks for leaks, abnormal vibrations, unusual noises, or any signs of wear or damage. Proper lubrication, seal replacement, and cleaning should also be performed according to the manufacturer’s recommendations. Regular maintenance helps identify and address potential safety issues before they escalate.

7. Operator Training:

Ensure that operators and maintenance personnel receive proper training on the safe operation and maintenance of the gear pump system. Training should cover system operation, safety protocols, emergency procedures, and the use of any required personal protective equipment (PPE). Well-trained personnel are essential for safe and efficient operation of the gear pump system.

It is important to note that the above considerations serve as general guidelines, and specific safety requirements may vary depending on the application, industry, and local regulations. Consulting with safety professionals and referring to industry standards and guidelines can provide further guidance on ensuring the safe use of gear pump systems.

gear pump

What is the significance of gear pump size and construction materials?

The size and construction materials of a gear pump play a significant role in its performance, durability, and suitability for specific applications. Here’s a detailed explanation:

1. Size:

The size of a gear pump refers to its physical dimensions, including the overall dimensions, shaft diameter, and gear dimensions. The size of a gear pump is important for the following reasons:

  • Flow Rate and Pressure: The size of the pump affects its flow rate and pressure capabilities. Larger gear pumps generally have higher flow rates and can handle higher pressures, while smaller gear pumps are suitable for lower flow rate and pressure requirements. Selecting the appropriate pump size ensures that it can meet the specific demands of the application.
  • Space Constraints: The physical size of the pump is crucial when space is limited. In compact installations or applications with restricted space, smaller gear pumps are preferred to optimize the use of available space.
  • System Integration: The size of the gear pump needs to align with the overall system design and integration. It should fit seamlessly into the system, considering factors such as mounting options, piping connections, and available space for maintenance and repairs.

2. Construction Materials:

The choice of construction materials for a gear pump is important for several reasons:

  • Chemical Compatibility: Different fluids have varying chemical properties, and certain fluids may be corrosive or reactive with certain materials. Selecting appropriate construction materials ensures compatibility with the fluid being pumped, preventing chemical reactions, degradation, or contamination of the fluid and the pump itself.
  • Mechanical Strength: Construction materials determine the mechanical strength and durability of the pump. The materials should be able to withstand the operating conditions, including pressure, temperature, and mechanical stresses, without deformation, fatigue, or failure. Common materials used for gear pump construction include cast iron, stainless steel, bronze, and specialized alloys.
  • Viscosity Handling: The construction materials can impact the pump’s ability to handle fluids with different viscosities. Some materials may have a lower resistance to wear or may experience higher friction with viscous fluids. The materials should be selected to ensure efficient operation and minimize the risk of pump damage or reduced performance when handling fluids of varying viscosities.
  • Hygienic Requirements: In industries such as food and pharmaceuticals, where strict hygienic standards must be maintained, gear pumps can be constructed using materials that comply with sanitary guidelines. These materials are easy to clean, resistant to contamination, and meet specific regulatory requirements.

3. Application Considerations:

When selecting the size and construction materials for a gear pump, it is important to consider the specific requirements of the application. Factors such as desired flow rates, pressure ranges, fluid properties, temperature conditions, and environmental factors should be taken into account. Proper sizing and material selection ensure that the gear pump can operate efficiently, reliably, and safely in the intended application.

In summary, the size and construction materials of a gear pump significantly impact its performance, durability, and suitability for specific applications. Proper sizing ensures that the pump can meet flow rate and pressure requirements, fit into the available space, and integrate well into the system. The choice of construction materials ensures chemical compatibility, mechanical strength, viscosity handling, and compliance with application-specific requirements. Considering these factors is crucial for selecting the right gear pump for optimal performance and longevity.

gear pump

How does a gear pump contribute to pumping viscous fluids?

A gear pump is particularly effective in pumping viscous fluids due to several contributing factors. Here’s a detailed explanation:

1. Positive Displacement:

One of the key advantages of gear pumps is their positive displacement operation. As the gears rotate, they create expanding and contracting chambers between the gear teeth and the pump casing. This positive displacement action effectively traps and carries a fixed volume of fluid with each revolution, regardless of its viscosity.

2. Close Tolerance Design:

Gear pumps are designed with close tolerances between the gears and between the gears and the casing. This tight clearance helps to minimize internal leakage and slippage of the fluid, ensuring efficient transfer of even highly viscous fluids. The close tolerance design also contributes to the pump’s ability to generate high pressures, which may be required when pumping viscous fluids.

3. Gear Tooth Geometry:

The gear tooth geometry of a gear pump plays a significant role in pumping viscous fluids. Gear pumps typically use gears with large tooth clearances and relatively large tooth depths. This design allows for better fluid flow and reduces the likelihood of fluid entrapment between the gear teeth. The gear tooth geometry promotes smoother and more effective displacement of viscous fluids.

4. Slow Speed Operation:

Pumping viscous fluids often requires slower pump speeds to maintain efficient flow. Gear pumps are well-suited for this purpose as they can operate at lower speeds without sacrificing their positive displacement characteristics. The slower speed allows the fluid more time to fill the expanding chambers between the gear teeth, resulting in improved pumping efficiency.

5. Heating and Insulation:

In some cases, heating the viscous fluid or insulating the pump can contribute to better fluid transfer. Gear pumps can be designed with heating or jacketing options to provide controlled heating of the fluid, reducing its viscosity and facilitating easier pumping. Insulation can also help maintain the fluid’s temperature during the pumping process, preventing excessive cooling and thickening of the fluid.

6. Material Selection:

Gear pumps can be constructed using materials that are well-suited for handling viscous fluids. Materials such as cast iron, stainless steel, or specific polymers may be chosen based on the compatibility with the viscous fluid’s characteristics. Proper material selection ensures the pump’s longevity and minimizes the risk of damage or clogging when pumping viscous fluids.

Overall, the positive displacement operation, close tolerance design, gear tooth geometry, slow speed operation, heating and insulation options, and material selection of gear pumps collectively contribute to their effectiveness in pumping viscous fluids. These factors enable gear pumps to handle a wide range of viscosities and ensure efficient fluid transfer in various industrial applications.

China Hot selling CNC Machining Aluminum Metal Bevel Worm Helical Spur Gears Herringbone Gears hypoid bevel gearChina Hot selling CNC Machining Aluminum Metal Bevel Worm Helical Spur Gears Herringbone Gears hypoid bevel gear
editor by CX 2024-03-28

gear pump

As one of leading gear pump manufacturers, suppliers and exporters of products, We offer gear pump and many other products.

Please contact us for details.

Mail:gear-pump.top

Manufacturer supplier exporter of gear pump

Recent Posts