Product Description
Electric Portable Vacuum Suction Pump with Battery
ANGELBISS Innovative Direct Plug-in Bottle System & Double anti-overflow protection system. Run 3 hours without AC power.
Features
1.Rechargeable DC 12V
2.Ambulance car use DC 12V
3.Fast recharge in 90 minutes, Continuous run 180 minutes (3 hours)
4.Superior Lithium batteries
5.Double anti-overflow protection system
6.Direct Plug-in Bottle System, only 1 push to take out bottle
7.1400ml capacity suction bottle
8.Innovative filter technology which prevents penetration of micro organisms and secretion into the device
9.Only 1 inlet for suction hose, avoid misleading of air inlet and outlet
10.Easy clean & sterilize & user-friendly operations
Body Structure Graphic
Accessories
1 Silicone suction hose Ø6mm, L=1.30m
1 Power adapter, inlet AC 220V , output DC 12V
1 Car lighter power cord adapter, DC 12V
1 Universal PC power cord wires
1 filter
1 Suction catheter (free)
Technical Specifications
System Map | Functions | AverLast 18B |
Pump Driving System | Max. Air Flow | 18L/min |
Max. Vacuum Pressure | 0.07Mpa | |
Work Mode | Continuously Run | |
Max. Jar capacity | 1400ml | |
Overflow Protection | Double Safety Protection | |
Innovative Filter | Waterproof Reusable | |
Inlet Cover | One only, and no need outlet | |
Electrical System | Pump Power Consumption | DC 12V, 130 W |
Adapter Power | AC 220V Input, DC 12V Output | |
Lithium Batteries (If new) | 1 set, DC 12V Full charge time about 1.5 hour Support use time 3 hours |
|
Ambulance Car Adapter | DC 12V | |
Auto Power off | 2 hours | |
Power Fuse | 1.0 A -φ5×20mm | |
Noise Level | <50dB(A) | |
Operate System |
Vacuum Gauge Range | 0.00Mpa ~ 0.1Mpa (0psi ~14psi) |
Vacuum Control Range | 0.02Mpa ~ 0.07Mpa | |
Suction Hose Hang Groove | One, at the left | |
Wall mounted Hang Tip | Two, at the back | |
Hidden Rotatable Handle | Yes, at the top | |
4 Safety System | Floating method | First level stop overflow |
Filter method | Second level stop overflow | |
Overheated Protection | Yes | |
Battery full charge | Full charge will auto isolate with AC power | |
Packaging Details | Machine Body Size | 283x195x273mm |
Import Carton Size | 415x360x300mm for 2 units | |
Net Weight per Unit | 4.2 kg | |
Import Gross Weight per Carton | 9.8 kg | |
Operating Condition | Operating Temperature | 41ºF to 104ºF (5ºC to 40ºC) |
Operating Humidity | 10% to 90% RH | |
Operating Atmospheric Pressure | 700-1060hpa | |
Storage Temperature | -4ºF to 131ºF(-20ºC to 55ºC) | |
Storage Humidity | 10 to 95% RH |
Company profile
AngelBiss Medical Technology Co.,Ltd is a Chinese manufacturer specializing in 5L Oxygen Concentrator and Portable Suction Machine.
AngelBiss is a technology holder supplier from United States, establish her first production facility in ZheJiang , mainly engage in development, exportation and manufacturing quality products on the field of Oxygen Therapy, Surgery Therapy, Asthma Therapy and Diagnostic Therapy. AngelBiss has provided many quality-pricing medical products to world customers.
AngelBiss is the brand can be sourced from end of last century.The critical technologies are brought in USA and Germany. And now having complete services networks on Malaysia,China, Nepal, Bangladesh, Ukraine, Italy, UK,and Iran. AngelBiss having the most professional talent engineering managements, experienced workers and sales managements team, which make her customers to believe AngelBiss can always be holding the progressive critical manufacturing equipments and better off quality control system that will continuously creat more values for her customers.
Production, product inspection and packaging
AngelBiss Medical Technology Co.,Ltd implements strict quality control and product testing, and adheres to the principle of quality first.
Quality policy: Continuously improve professionalism, Continuously optimize the workflow, Ensure the safety and effectiveness of the product.
Quality goal: The pass rate of raw materials inspection exceeded 95%, Product assembly qualification rate exceeds 98%, The factory pass rate is 100%.
After sales service
We offer a one-year warranty to our global distributors and customers.
Choose AngelBiss, Now level up faithfullness of our health
Contact us
Ms. Elice
AneglBiss Medical Technology Co.,Ltd.
Mob:
Web: szcarvindu
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Customized: | Non-Customized |
---|---|
Certification: | CE, ISO13485 |
Colour: | White |
Type of Body Fluid-Processing Device: | Suction Machine |
Transport Package: | Gift Boxes and Pallets |
Specification: | According to Model |
Customization: |
Available
|
|
---|
What Are the Advantages of Using Oil-Sealed Vacuum Pumps?
Oil-sealed vacuum pumps offer several advantages in various applications. Here’s a detailed explanation:
1. High Vacuum Performance: Oil-sealed vacuum pumps are known for their ability to achieve high levels of vacuum. They can create and maintain deep vacuum levels, making them suitable for applications that require a low-pressure environment. The use of oil as a sealing and lubricating medium helps in achieving efficient vacuum performance.
2. Wide Operating Range: Oil-sealed vacuum pumps have a wide operating range, allowing them to handle a broad spectrum of vacuum levels. They can operate effectively in both low-pressure and high-vacuum conditions, making them versatile for different applications across various industries.
3. Efficient and Reliable Operation: These pumps are known for their reliability and consistent performance. The oil-sealed design provides effective sealing, preventing air leakage and maintaining a stable vacuum level. They are designed to operate continuously for extended periods without significant performance degradation, making them suitable for continuous industrial processes.
4. Contamination Handling: Oil-sealed vacuum pumps are effective in handling certain types of contaminants that may be present in the process gases or air being evacuated. The oil acts as a barrier, trapping and absorbing certain particulates, moisture, and chemical vapors, preventing them from reaching the pump mechanism. This helps protect the pump internals from potential damage and contributes to the longevity of the pump.
5. Thermal Stability: The presence of oil in these pumps helps in dissipating heat generated during operation, contributing to their thermal stability. The oil absorbs and carries away heat, preventing excessive temperature rise within the pump. This thermal stability allows for consistent performance even during prolonged operation and helps protect the pump from overheating.
6. Noise Reduction: Oil-sealed vacuum pumps generally operate at lower noise levels compared to other types of vacuum pumps. The oil acts as a noise-damping medium, reducing the noise generated by the moving parts and the interaction of gases within the pump. This makes them suitable for applications where noise reduction is desired, such as laboratory environments or noise-sensitive industrial settings.
7. Versatility: Oil-sealed vacuum pumps are versatile and can handle a wide range of gases and vapors. They can effectively handle both condensable and non-condensable gases, making them suitable for diverse applications in industries such as chemical processing, pharmaceuticals, food processing, and research laboratories.
8. Cost-Effective: Oil-sealed vacuum pumps are often considered cost-effective options for many applications. They generally have a lower initial cost compared to some other types of high-vacuum pumps. Additionally, the maintenance and operating costs are relatively lower, making them an economical choice for industries that require reliable vacuum performance.
9. Simplicity and Ease of Maintenance: Oil-sealed vacuum pumps are relatively simple in design and easy to maintain. Routine maintenance typically involves monitoring oil levels, changing the oil periodically, and inspecting and replacing worn-out parts as necessary. The simplicity of maintenance procedures contributes to the overall cost-effectiveness and ease of operation.
10. Compatibility with Other Equipment: Oil-sealed vacuum pumps are compatible with various process equipment and systems. They can be easily integrated into existing setups or used in conjunction with other vacuum-related equipment, such as vacuum chambers, distillation systems, or industrial process equipment.
These advantages make oil-sealed vacuum pumps a popular choice in many industries where reliable, high-performance vacuum systems are required. However, it’s important to consider specific application requirements and consult with experts to determine the most suitable type of vacuum pump for a particular use case.
How Do Vacuum Pumps Contribute to Energy Savings?
Vacuum pumps play a significant role in energy savings in various industries and applications. Here’s a detailed explanation:
Vacuum pumps contribute to energy savings through several mechanisms and efficiencies. Some of the key ways in which vacuum pumps help conserve energy are:
1. Improved Process Efficiency: Vacuum pumps are often used to remove gases and create low-pressure or vacuum conditions in industrial processes. By reducing the pressure, vacuum pumps enable the removal of unwanted gases or vapors, improving the efficiency of the process. For example, in distillation or evaporation processes, vacuum pumps help lower the boiling points of liquids, allowing them to evaporate or distill at lower temperatures. This results in energy savings as less heat is required to achieve the desired separation or concentration.
2. Reduced Energy Consumption: Vacuum pumps are designed to operate efficiently and consume less energy compared to other types of equipment that perform similar functions. Modern vacuum pump designs incorporate advanced technologies, such as variable speed drives, energy-efficient motors, and optimized control systems. These features allow vacuum pumps to adjust their operation based on demand, reducing energy consumption during periods of lower process requirements. By consuming less energy, vacuum pumps contribute to overall energy savings in industrial operations.
3. Leak Detection and Reduction: Vacuum pumps are often used in leak detection processes to identify and locate leaks in systems or equipment. By creating a vacuum or low-pressure environment, vacuum pumps can assess the integrity of a system and identify any sources of leakage. Detecting and repairing leaks promptly helps prevent energy wastage associated with the loss of pressurized fluids or gases. By addressing leaks, vacuum pumps assist in reducing energy losses and improving the overall energy efficiency of the system.
4. Energy Recovery Systems: In some applications, vacuum pumps can be integrated into energy recovery systems. For instance, in certain manufacturing processes, the exhaust gases from vacuum pumps may contain heat or have the potential for energy recovery. By utilizing heat exchangers or other heat recovery systems, the thermal energy from the exhaust gases can be captured and reused to preheat incoming fluids or provide heat to other parts of the process. This energy recovery approach further enhances the overall energy efficiency by utilizing waste heat that would otherwise be lost.
5. System Optimization and Control: Vacuum pumps are often integrated into centralized vacuum systems that serve multiple processes or equipment. These systems allow for better control, monitoring, and optimization of the vacuum generation and distribution. By centralizing the vacuum production and employing intelligent control strategies, energy consumption can be optimized based on the specific process requirements. This ensures that vacuum pumps operate at the most efficient levels, resulting in energy savings.
6. Maintenance and Service: Proper maintenance and regular servicing of vacuum pumps are essential for their optimal performance and energy efficiency. Routine maintenance includes tasks such as cleaning, lubrication, and inspection of pump components. Well-maintained pumps operate more efficiently, reducing energy consumption. Additionally, prompt repair of any faulty parts or addressing performance issues helps maintain the pump’s efficiency and prevents energy waste.
In summary, vacuum pumps contribute to energy savings through improved process efficiency, reduced energy consumption, leak detection and reduction, integration with energy recovery systems, system optimization and control, as well as proper maintenance and service. By utilizing vacuum pumps efficiently and effectively, industries can minimize energy waste, optimize energy usage, and achieve significant energy savings in various applications and processes.
Can Vacuum Pumps Be Used in Food Processing?
Yes, vacuum pumps are widely used in food processing for various applications. Here’s a detailed explanation:
Vacuum pumps play a crucial role in the food processing industry by enabling the creation and maintenance of vacuum or low-pressure environments. They offer several benefits in terms of food preservation, packaging, and processing. Here are some common applications of vacuum pumps in food processing:
1. Vacuum Packaging: Vacuum pumps are extensively used in vacuum packaging processes. Vacuum packaging involves removing air from the packaging container to create a vacuum-sealed environment. This process helps extend the shelf life of food products by inhibiting the growth of spoilage-causing microorganisms and reducing oxidation. Vacuum pumps are used to evacuate the air from the packaging, ensuring a tight seal and maintaining the quality and freshness of the food.
2. Freeze Drying: Vacuum pumps are essential in freeze drying or lyophilization processes used in food processing. Freeze drying involves removing moisture from food products while they are frozen, preserving their texture, flavor, and nutritional content. Vacuum pumps create a low-pressure environment that allows frozen water to directly sublimate from solid to vapor, resulting in the removal of moisture from the food without causing damage or loss of quality.
3. Vacuum Cooling: Vacuum pumps are utilized in vacuum cooling processes for rapid and efficient cooling of food products. Vacuum cooling involves placing the food in a vacuum chamber and reducing the pressure. This lowers the boiling point of water, facilitating the rapid evaporation of moisture and heat from the food, thereby cooling it quickly. Vacuum cooling helps maintain the freshness, texture, and quality of delicate food items such as fruits, vegetables, and bakery products.
4. Vacuum Concentration: Vacuum pumps are employed in vacuum concentration processes in the food industry. Vacuum concentration involves removing excess moisture from liquid food products to increase their solids content. By creating a vacuum, the boiling point of the liquid is reduced, allowing for gentle evaporation of water while preserving the desired flavors, nutrients, and viscosity of the product. Vacuum concentration is commonly used in the production of juices, sauces, and concentrates.
5. Vacuum Mixing and Deaeration: Vacuum pumps are used in mixing and deaeration processes in food processing. In the production of certain food products such as chocolates, confectioneries, and sauces, vacuum mixing is employed to remove air bubbles, achieve homogeneity, and improve product texture. Vacuum pumps aid in the removal of entrapped air and gases, resulting in smooth and uniform food products.
6. Vacuum Filtration: Vacuum pumps are utilized in food processing for vacuum filtration applications. Vacuum filtration involves separating solids from liquids or gases using a filter medium. Vacuum pumps create suction that draws the liquid or gas through the filter, leaving behind the solid particles. Vacuum filtration is commonly used in processes such as clarifying liquids, removing impurities, and separating solids from liquids in the production of beverages, oils, and dairy products.
7. Marinating and Brining: Vacuum pumps are employed in marinating and brining processes in the food industry. By applying a vacuum to the marinating or brining container, the pressure is reduced, allowing the marinade or brine to penetrate the food more efficiently. Vacuum marinating and brining help enhance flavor absorption, reduce marinating time, and improve the overall taste and texture of the food.
8. Controlled Atmosphere Packaging: Vacuum pumps are used in controlled atmosphere packaging (CAP) systems in the food industry. CAP involves modifying the gas composition within food packaging to extend the shelf life and maintain the quality of perishable products. Vacuum pumps aid in the removal of oxygen or other unwanted gases from the package, allowing the introduction of a desired gas mixture that preserves the food’s freshness and inhibits microbial growth.
These are just a few examples of how vacuum pumps are used in food processing. The ability to create and control vacuum or low-pressure environments is a valuable asset in preserving food quality, enhancing shelf life, and facilitating various processing techniques in the food industry.
editor by CX 2023-12-26